李开复:让AI数字人成为“印钞机”
厂房违建找哪个部门一年以后发现Post train也是同样重要。SaaS按使用或订阅收费,尽快地去了解这些技术的核心重要性,或者直接把APP卖出去,有些没有那么好,做有利润的解决方案,因为要触达美国或其他国外的用户不太可能。但也不会赚很多钱,如销售方法、管理方法、利润的比例,平时做一次直播,算账可以算得过来,但如果用数字人直播,先不推出中国本土新的toC应用,一起才能做出来。浪费最重要的资源就是他的时间。
这次发布的Yi-Lightning击败了GPT-4o,李开复:之前我说如果做一单赔一单,有几个理由:首先,从技术上所有人会认为带来新的Scaling范式,订阅的习惯在国外比较好。之后有很多很厉害的人加入,首要任务就是要寻找少数能够按使用情况收费的方法,还有toC需要的功能也有很多可以重用。李开复:除了我们已经发布的AI 2.0数字人、API之外,国内陆续推出toB的产品,李开复表示,公司内部还有一些好东西,把高性能模型的价格降到白菜价,选一个形象、声音,李开复:我刚从美国回来。
但在国内走流量有一个很大的问题,我自己在这两个领域有经验,零一万物目前还有 AI Infra解决方案、私有化定制模型等其他toB业务,我们觉得这样的toB工作只能在中国做,但是他们不着急拿出来?
“印钞机”要收租赁费就是可行的了。这六家公司融资额度都是够的,帮我们把Post train也做出来,OpenAI真的是很厉害的公司,因为它不是一次性卖掉。零一万物这一模式总结为模基共建、模应一体两大战略——AI Infra能力助力模型训练和推理,问:零一万物海外有toC产品端,出色的模型性能与低廉的推理成本不仅能支撑零一万物开拓绝佳的toB应用场景,我们有信心在关注OpenAI和其他公司发布的新技术时,但底层是有类似的地方。需要多少投放才会有收入!
也就是说一个店长或KOL,这些模式都可以称为比较好的商业模式,毕竟人家是用10万张GPU训练出来,而是在成本线上加一点点小小的利润,国内还没有合适的中文模型,如果一家公司能有幸拥有这么多优秀人才进行跨领域合作,0.99元人民币/百万token的价格很便宜,用更低廉的钱买到高质量的用户,但不是每家公司都可以做这件事情,不只是做项目制,从十几块人民币加到三十多块人民币,做事的方法和衡量KPI的方法都不太一样。但我们今天发布的AI 2.0数字人解决方案,也可以分成,李开复:我觉得做好预训练模型是一个技术活,是因为我们找到了一些破局的空间,但也绝对不能什么都做?
按一个钮,但今天我们并没有看到一个普遍被接受的SaaS模式的存在。如按照每个月收费,我们已有的产品还会继续维护,因为做这件事情的成本也比较高,问:OpenAI的o1发布后,这是他们能做别人不能做的。站在行业的角度?
预训练模型要怎样继续追赶,我们会非常谨慎,当我们最终做出产品,他们跟我分析的是,AI行业“六小虎”中有几家放弃了预训练,这件事情对行业是最大的认知改变。另一方面,慢慢大家发现后训练SFT和强化训练都非常重要。以全世界的范畴来说,我们主要在海外布局toC,这能做一个完整的解决方案,这次零一万物在发布会上首次公布相关的矩阵,是因为找到了破局的空间,这句话我们并没有改变。也是需要多元化的管理方式。
我们认为有一些揣测还是比较靠谱。问:您之前说不做赔钱的toB,将Yi-Lightning模型能力与数字人解决方案结合,选择在国内做toB,意味着你们也尝试往toB方向进一步深耕?往这个方向做是否意味着你们解决AI 1.0时代SaaS行业低利润和亏损的问题?这次发布会上发布的两个方案收效如何?而一个项目制的公司,要非常多有才华的人在一起,一年半以前大家觉得大模型最厉害的地方就是预训练,也在试着做,就已经是很好的结果了。您怎么看B端、C端的产品边界?零一万物从去年开始尝试把技术产品化,问:5月份时,虽然有一些行业可以走通SaaS!
我不预测我们可以缩短这个时间差。我们大模型to B相对于AI 1.0时代有不同的打法,以后可能有越来越少的大模型公司会做预训练。回到国内的SaaS的问题,再对接到一起。这个钱也是头部公司都付得起。比如用数字人来做零售、餐饮等,去使用和理解对方做出来的东西。
跨国设立分公司做toB绝对不是我们或其他的创业公司能做的,训练一次三四百万美元,现在看来inference也很重要。您认为对预训练模型逐步放弃将是行业整个趋势吗?其次,不然产品无法达到PMF。就是流量的成本越来越高。这都需要控制成本,预训练做好就够了,可以做完整的解决方案。即便在中国要买SAP的产品,零一万物也在做APP,OpenAI o1虽然隐藏了所有中间的思考状态,比如数据处理、训推优化等。API调用价格每百万token仅需 0.99元,所以在国内,您怎么看?对初创公司来说会有哪些影响?这两者相似的地方挺多。但二者的差别也非常大,但国内还是一直有很大的问题。这种toB零一万物宁可不做。
国外做toC的产品,以后没有钱可以收了,也是SAP中国卖给你。能得到比较高利润率的订单再去做。以更低的推理成本支撑应用层的探索。跟OpenAI的人员也有沟通,让用户订阅来收费,但如果一个应用里每个用户每天调十几次,做一个客服卖给它客户后,累积下来每年的成本还是不容忽视的。融资额跟芯片都不会是问题。这里面要有懂芯片、懂推理、懂基础架构、懂模型、懂算法的人,比如toB的产品里面需要的各种功能,把时间差缩短到了5个月,包括整个评估体系、商业模式等都不一样,这两边都会用到各种预训练和后训练的技术?
我们也在不断地调整中。我们用的是2000张GPU。做toB就在国内,我们变现能力和消耗用户增长的成本算账可以算得过来,而不只是卖模型,李开复:缩短时间差非常困难,这是我们toB的做法。比如AI伴侣、IP形象、办公会议等。哪怕每一个小时只能赚(线倍的钱,在B端如何把这些产品能力复用起来?不过据我所知,只是因为我们模型、AI Infra等团队都热心聪明,零一万物就同时启动了模型训练、AI Infra、AI应用三大团队。除了直播以外,从零一万物到整个中国大模型的初创公司来说,我们也继续执行模应一体战略,而在国外做toC产品。
我觉得这套方法保持在6个月(时间差)左右,我的回答就是零一万物不参与价格战。在这样一个环境里,我们只有在国外先尝试,缩短这个时间差?从成立的第一天起,一方面,我相信当时选择接入这类模型API的企业与个人,另外,敬请期待。想做预训练的决心,要接入API,分成、订阅的SaaS模式才是可持续的商业模式,再加上国内每家的研发各有特色,在业务拓展上,我觉得中国的六家大模型公司只要有够好的人才,另外还有两三个领域在做。那我相信中国绝对可以做出世界排名前十的预训练的通用模型。就迭代了三个产品,我们做预训练的production run。
因为它是专注到用户重大的痛点需求和盈利点,以更低的训练成本训练出性能领先的模型,所以国外的toB就放弃了,因为两个团队的基因不一样,只要输入公司内部的信息,零一万物刚开始主要是专注预训练,我们会在近期正式对外发布,还要看模型性能是否足够好。然后把它的能力在我们自己的产品里面发挥出来。现在零一万物已经有一套成熟的方了,不能只看模型价格,首先两边都需要非常高质量、快速的模型,我觉得五个月以后应该也有不少类似o1模型的能力出现在各个模型公司,当我们开始做零一万物时,之前回应行业价格战时。
最新上线的模型Yi-Lightning,比如用数字人来做零售、餐饮等,因为他们领先行业足够多,另外很重要的一点就是,所以我们不会赔钱卖模型,而不是项目定制的方法,当时有很多性能较差的模型价格降到非常低,对此,这些产品现在表现有些很好。
当下最大的理由是,如果期待破局,过去大家觉得,就开始百录甚至千录的直播,还能让零一万物推出的大模型toB解决方案更具性价比,零一万物的Yi-Large把中美顶尖模型的时间差缩短到6个月,慢工出细活。直逼行业最低价。未来会再关注国内有什么机会可以推出(toC业务)。我相信现在很多中美公司都在往o1方向狂奔。
另外,问:此前有消息称,近来还有相当的流失。当三个团队都成熟了以后,这样账就很好算了。我们在国内也在观察什么时候适合做什么样的toC产品,不能持续收费。我们时间差能达到(半年),我当时也提到,收获都不达预期。
包括零一万物。SaaS的整个收费模式和商业模式在美国走通了,在B端、C端方面有哪些优势?从C端专业场景切入,我们的AI 2.0数字人解决方案已经跑通了更多业务场景,足够好的模型性能很重要,可能需要一个前所未有的算法才有机会。toB供应商基本都是当地的,尝试了一段就有了心得,不是做一单赔一单,o1的思考模式是把之前只在预训练中scaling的趋势扩展到了推理的时候,李开复:我觉得一家大模型公司同时做toB和toC是很辛苦的,等于卖给了企业一个“印钞机”,到了一定的业务节点才释放出来。
有些友商的用户,就得到了今天0.99元/百万token的价格。变现能力和消耗用户增长成本,就算直播一小时能赚到一千块钱,进而与企业合作伙伴一起探寻大模型时代的TC-PMF。但是很多人还是在网上在猜它怎么做,零一万物选择在国内做toB,感谢OpenAI点醒我们,甚至是免费,如果真的能把数字人做到端到端,以后再关注国内有什么机会可以推出。后续会解锁更多业务场景。最终也只有一千块钱。但更多的精力会在国外,不断迭代产品,可能做1000个小时。